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The proof follows from Lemmas 1 and 2. Given the constraint I+, we obtain from inequality 
(12) the value h = u,cy’C;‘I b/-l, which guarantees the required control bound for any t E [O, Tl, 
T>l. Then, using the bound (lo), we compute R, and the time T that ensures the condition 
I =o I< Ro (PO. U. To this end, it suffices to take T > ) zoIB. po-%o-lc,a+ 1. Substituting the 
corresponding value of PO. we finally obtain T > 1 z. ~*~,,-%~‘%~~(b (I + 1. 

Example. Consider a point that moves with a bounded velocity along the horizontal 
directrix. Assume that the velocity of the point may change instantaneously within given 
bounds. There are m pendulums of various lengths attached to the point. Controlling the 
velocity of the point, it is required to move the system to the origin so that all the oscil- 
lations are damped. It can be verified that this system is stable and completely controllable 
(the controllability is proved in /5/). Therefore, for any bounded region in phase space, 
we can construct by our theorem a linear velocity controller which takes the system from any 
initial position in this region to the origin. The control on any of the realized trajec- 
tories will not exceed the specified value. 

Remarks. 7'. If system (1) is unstable, then a control bounded by a given constant 
that takes a phase point to the origin does not necessarily exist. As an example, consider 
the equation t'= z+ IL, 1 ul<uo, ZE RI. For I z. I > uo, the required control obviously does not 
exist. The conditions of the theorem are therefore very close to necessary. 

2". All the bounds and conclusions remain valid in the case when u is a vector and b 
is an appropriately dimensioned matrix. 
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A SPECIAL CASE OF HYDRbDYNAMIC STABILITY* 

A.G. BERSHADSKII 

The following dependence of the amplitude of the velocity perturbations 
on the supercriticality parameter: A _ $1. is typical of the case of the 
selfexcited oscillations which are generated when there is instability 
in the stationary flows of a viscous incompressible fluid. There is, 
however, a special case (it is investigated in this note) when this 
dependence is linear (as in the case of bifurcations in a stationary 
regime /l/l. A condition is obtained for the existence of such 
selfexcited oscillations together with an algorithm which enables one 
to find their frequency and amplitude. In the case of these self- 
excited oscillations there is a further difference from conventional 
hydrodynamic selfexcited oscillations in that sub- and supercritical 
regimes coexist in them and, at the same time, the subcritical 
selfexcited oscillations turn out to be unstable while the 
supercritical selfexcited oscillations are stable. 
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The problem of the stability of a stationary flow of a viscous incompressible fluid can 
be reduced to an investigation of the stability of the zeroth solution of the equation /l, 2/ 

d&it = Lu + F (IL, u) (U 

where u is an element of a certain Hilbert space, L is a linear operator in this space, and 
F is a bilinear operator in this space. If the spectrum of the operator L emerges into the 
right half plane then the primary stationary flow becomes unstable /2/. The operator L is 
selfadjoint. The eigenvectors and associated vectors of this operator form a complete system 
of vectors in the Hilbert space under consideration /2/. Let us expand the solution of 
Eq.(l) in a series in the above-mentioned system of vectors 

!J (t) = 2 =k tt) ‘h 
k=l 

m 

It follows from the real nature of the physical fields that the complex eigenvalues Y 
always coexist with the complex conjugate vaues 5 in the spectrum of the operator L /2/: 

L$ = h#. L$ = q. If the stationary flow admits of symmetry groups it is possible to arrange 
more than one pair of eigenvalues of the operator L on a straight line parallel to the 
imaginary axis /l/. Let a straight line exist close to the imaginary axis on which two such 
pairs are located: 

__ 
v1 = 6 + io,; VI = 6 + Zio,, VI, vl, where the magnitude of 161 is small. The 

remaining eigenvalues of the operator L lie to the left of this straight line and the imaginary 
axis. From what follows it will be clear that this satisfaction of the above-mentioned con- 
ditions with an accuracy O(P) is sufficient for selfexcited oscillations to exist. 

Let v1 and V, be simple eigenvalues /2/. Then, by substituting the series (2) into (1) 
and by scalar multiplication by the eigenvectors of the operator L+, which is adjoint to L, 
we get the equations for a1 and op 

In deriving these equations, account has been taken of thefactthat the function cp, is 
orthogonal to all qk, apart from *1, and that 'ps is orthogonal to all (Pkr apart from rpP 
The equations for a, = Lil and for ,~,=a~ are obtained by taking the complex conjugates. 
It can be shown, that, when the remaining parameters are fixed, the quantity 8-((Re- I&,)/l. 2/, 
We shall therefore refer to 6 as the supercriticality parameter. 

Let us make the change of variables 0= at, where o is the required frequency of the 
selfexciting oscillations and expand e, (0) and o in series in powers of 8 (see /l, 2/ 
regarding the basis of such analytical expansions for problems of gas-dynamic stability) 

a, = &a(,') + &l(," + . . .( o = q, + 60, + ti%, + . ., bj$, = bJrm (6 = 0) 

By substituting these expansions into the equations, we get to the first order, 

a(l) (63) = A, sxp (ije) I (3) 

The amplitudes Al are found from the following orders of the expansion. It can be shown 
that, when h>4, 

up (e) = (c, + c*G + . ..+e.ek)eap(kn~) 

(the occurrence of a factor which is a polynomial in 8 is associated with the joining of 
the vectors /3/). Since Rev,<0 when n>4 then, when n>4, the quantities 
decay with time. 

a'n" (e) 

The equations will subsequently be written out without terms which decay with time, since 
the latter are of no interest. The, to the second order, we get (differentiation with respect 
to 0 is denoted by a dot) 

where S= 1 for the supercritical case and )3=-i for the subcritical case. If one now 
substitutes the $) from (3) into the right-hand sides of these equations, the terms --exp(ie) 
when j= 1 and the terms --exp(128) when j=2 will lead to resonances. The conditions 
for freedom from resonances 
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A, = b$$4A,*/(Zio, - 6) 

(Zio, - f~) (fn - io,) + 1 A, I’k = 0 

k = k, f ik, = Re ((biii + b$!$ b!&} f i Im (bg + b$$ 

(4) 

yield 

The fact that it is not the quantity A, which has been found but its modulus is not 
important since the initial phase of one of the selfexciting oscillations of a doublet can 
be arbitrarily chosen and, in particular, A, may be taken as being real. It follows from 
the first relationship in (5) that its right-hand side must be positive. This is attainable 
for any sign of 8 by a choice of a suitable sign in the second relationship (5). Hence, sub- 
and supercritical selfexciting oscillations coexist in this case (unlike the usual self- 
exciting oscillations where sub- and supercritical selfexciting oscillations preclude one 
another). The question of the stability of the sub- and supercritical regimes is therefore 
particularly important here. In answering this question, the discussion may be confined to 
the first orders with respect to 6. Let us consider the equations 

which have been linearized on the investigated selfexciting oscillation, where at' (f3) are 
the modes of the investigated selfexciting oscillations in the first order with respect to 
6.' The Floquet representation for the evolution operator of these equations is /4, 5/: 

V(8) = Q (‘3 =P (G8) 

The stability or instability of the selfexciting oscillation is determined by the location 
of the spectrum of the operator C. the smallness of 6 can be used to determine when the 
spectrum of the operator G gets into the right half-plane. Let us expand the operator in 
powers of 6: 

G = Go + 6G1 + . . ., G, = i diag (1, 2) 

The eigenvalues of the operator G0 are as follows: ajo)= i, $‘I= 2i while the eigen- 
vectors corresponding to them, are z, = (1, O), z* = (8, i). The formula due to Krein /5/ 

To = L’no,‘, A, = 0;’ diag (p - io,, p _ Zo,J] 

can be used to determining the operator G,, where y,, is a contour which 
spectrum of the operator Go fairly tightly. 

It is obvious that harmonic perturbations of the right-hand side of 
make any contributions to Re{o)-6. 

If the spectrum of the operator G is expanded in a series in powers 
we obtain 

e(r) = (y, G1z) 

where x is an eigenvector of the operator GO,ly is an eigenvector of the 

(6) 

encompasses the 

the equation do not 

of &:o = (T(O) + &J(l) + . . ., 

(7) 

operator which is 
adjoint to it, and the brackets here denote a two-dimensional scalar product. Then, by sub- 
stituting the value of G1 from (6) and (7) and evaluating the integrals, we obtain 

Re (U] = -_Bo,-'6 + . . . . 

It follows from this that, for small 6. the subcritical selfexcitedoscillations (8= --1) 
are unstable (Re(a)>O) while the supercritical selfexcited oscillations (8=1) are stable 
(Re @I< 8). 
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THE FORMATION OF ZERO FREQUENCY INTERNAL'WAVES DURING FREE CONVECTION 

IN A TEMPERATURE-STRATIFIED LIQUID* 

A.V. KISTOVICH and YU.D. CHASHECHKIN 

It is shown, as a result of an analysis of the equations of free 
convection in a temperature-stratified medium (TSM), that internal waves 
of zero frequency are formed when a thermal source is included together 
with a floating flare. The wavelength of these waves is calculated and 
the parameters of the transition processes are determined. 

Zero-frequency internal waves, which are observed experimentally /l/, are an important 
element of convective flows which are generated by thermal sources in liquids with salinestrati- 
fication. Only the parameters of a flare which floats above a localized source of heat have 
been calculated in a TSM /2/. There is interest in the possibility of the existence of zero- 
frequency internal waves which are excited by the thermal source in a TSM and in determining 
their parameters. 

1. PomZation of the problem. The linearized system of convection equations in the TSM 
in a cylindrical system of coordinates at the origin of which a thermal source with a power 
P is located and where the gravitational vector g is directed opposite to the z-axis has the 
form 

P 6 (2) 8 (rj 
aT’/at + V.(UT, (g) = XAT’ + - 2nr 8 (t) 

“$0 
UP a (2) 6 (r) 

wat-~ov+T, (I)) + hV.u = ---B(t) 
=P 

I’ = PO (1 - 0, r = T, (2) + T’, T, (a) = To (1 + z/(aT,A)) 

Here u is the velocity of the medium, p is the pressure after subtracting the hydro- 
static pressure, J', To (.) and 2" are the total, stratifying and excess temperatures, To and 
PO are the temperature and density of the medium at the level z=O,p is the density of the 
medium, a, 1 and v are the coefficients of thermal expansion, the thermal diffusivity and 
the kinematic viscosity, e, is the heat capacity of the medium at constant pressure and A 
is the temperature stratification scale. The initial and boundary conditions, taken at 
infinity and the conditions on the functions u,p and T' are homogeneous. 

The velocity field, which is axially symmetric can be represented in the form 

u=v+w, v=-Vh, w,=-aaqar. w,=-ayylaz 

A$J++O, A/-&(+) 

Here, u+ and W, are the radial and vertical components of the solenoidal part of the 
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